ECE 592-081: Quantum Computing Semester Project B1 Progress Report 1

Kelvin Dsouza William McCray

https://pages.github.ncsu.edu/wmccray/ECE592ProjectB1/

Implementation of QisKit tutorial into simulation of ground state energy of LiH and comparing with actual implementation.

The following steps were implemented.

- Define a molecule and get integrals from a computational chemistry driver (PySCF in this case)
- 2. Construct a Fermionic Hamiltonian and map it onto a qubit Hamiltonian
- 3. Instantiate and initialize dynamically-loaded algorithmic components, such as the quantum algorithm VQE, the optimizer and variational form it will use, and the initial state to initialize the variational form
- 4. Run the algorithm on a quantum backend and retrieve the results

Over the next few weeks we will be simulating a Helium atom on QuisKit similarly to how the Hydrogen atom was simulated using the above method.

Task	Contribution
Literature Review	Kelvin and William Equally
Functions and implementation	Kelvin and William Equally
Task to be done	Timeline
Run on real device IBM Q	Oct 29, 2020
Perform additional research on He energy states	Nov. 5, 2020
Have draft of He atom simulation script complete	Nov. 12, 2020
Simulate with He atom	Nov. 17, 2020

Bibliography

- Li, Gushu, et al. "Towards Efficient Superconducting Quantum Processor Architecture Design."

 **ASPLOS*, 20 March 2020, https://asplos-conference.org/2020/program.html. Accessed 7

 October 2020.
- McArdle, Sam, et al. "Quantum computational chemistry." arXiv:1808.10402 [quant-ph], Rev. Mod. Phys. 92, 15003 (2020), 27 January 2020, https://arxiv.org/abs/1808.10402.

 Accessed 8 October 2020.
- Wood, Steve, and Manoel Marques. "qiskit-aqua." *GitHub*, https://github.com/Qiskit/qiskit-aqua.

 Accessed 22 10 2020.